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Super twistor space andN = 2
supersymmetric instantons

Tadashi Taniguchi
Sendai National College of Technology, 1 Kamiayashi-kitahara aobaku, Sendai 989-3124, Japan

Received 19 December 2002

Abstract

A relationship betweenN = 2 supersymmetric Yang–Mills instantons on the Euclidean four
space and certain holomorphic super vector bundles over super twistor space is investigated. We
give the ADHM-matrix solutions ofN = 2 supersymmetric instantons.
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1. Introduction

In 1989, Harnad et al.[9] showed that there is a one-to-one correspondence between
N-supersymmetric Yang–Mills fields over the complex super vector spaceC4|4N and certain
holomorphic super vector bundles over the space of super null linesL5|2N . Theorem 2.1in
Section 2has a long history. Using Ferber’s[7] extension of twistor theory to complex super
vector space, Witten[19] gave a proof forN = 0 and 3 using supersymmetry. Independently,
Green and coworkers[12] gave a proof forN = 0. Manin[14] reformulated super twistor
theory using super flag manifolds and outlined a cohomological proof for 0≤ N ≤ 3 which
generalized the earlier cohomological proof for the caseN = 0 [11].

On the other hand, the ADHM description[2,4]was first discovered using twistor methods
which go back to Ward[17]. The twistor space of four sphereS4 is complex projective three
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spaceP3 and Ward showed that there is a one-to-one correspondence between instantons
over open sets inS4 and certain holomorphic vector bundles over the corresponding open
sets inP3, it so calledPenrose–Ward correspondence. So the problem of describing all
instantons is reduced to the description of holomorphic vector bundles overP3. In this
framework the solutions are obtained from monads overP3, and then the Penrose–Ward
correspondence is used to pass back toS4. See Atiyah[1] and Atiyah et al.[2–4] for this
part of the theory.

The purpose of this paper is to present aN = 2 supersymmetric generalized instan-
tons of some of the above-mentioned results. The organization of the paper is as follows.
Section 2describes a review of some known facts about supermanifold, spinors,N = 2
supersymmetry and super connection, etc. InSection 3we define the super twistor space,
self-dual super plane and double fibration of super twistor diagram. InSection 4we define
theN = 2 supersymmetric instantons. We also show the equivalent conditions forN = 2
supersymmetric instantons. InSection 5we generalize the Penrose–Ward correspondence
N = 2 supersymmetric instantons in the case of complex super vector spaceC4|8 with
structure groupGL(p|q;C). The idea of proof is to use the self-dual super plane. We also
present to describe the Penrose–Ward correspondence which is restricting to the real su-
per vector spaceR4|8 with structure groupGL(n;C) andSU(n). In Section 6we give the
ADHM-matrix solutions ofN = 2 supersymmetric instantons.

2. Preliminaries

LetE be a rank-n vector bundle over am-dimensional manifoldM. Then let∧E be the
exterior algebra ofE, and letO(∧E) be the locally free sheaf of sections of∧E [13,14].

Definition 2.1. The ringed space(M,O(∧E)) is called a split supermanifold of dimension
m|n.

Let Cm be am-dimensional complex vector space. The typical example is the complex
(or real) super vector spaceCm|n (orRm|n). LetE be the trivialCn-bundle overCm. Then∧

E =
∧
(Cm × Cn) = S(Cm)∗ ⊗

∧
(Cn)∗ = C[x1, x2, . . . , xm] ⊗

∧
(Cn)∗

= C∞(Cm)⊗
∧
(Cn)∗.

Hence the ringed space(Cm,O(C∞(Cm) ⊗ (Cn)∗)) is called the complex super vector
space and is denoted byCm|n. Consider

= (C2, ε),

whereε is a skew-symmetric nondegenerate complex bilinear form. Sinceε is nondegen-
erate, we can useε to identify with ∗, the complex-linear dual of. Then we have

⊗R C = + ⊕ −
, TxR

4 ⊗R C ∼= + ⊗ −
,

∗ ⊗R C = + ⊕ −, T ∗
x R

4 ⊗R C ∼= + ⊗ −,
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where + and − are thei and−i eigenspaces, respectively, of the almost complex structure
of S extended in aC-linear fashion to ⊗R C. We treat ∗ ⊗R C in the same fashion. The
mapping

(εAB) : + → +
, (εȦḂ) : − → −

,

(εAB) : + → +, (εȦḂ) : − → −
is given, respectively, in terms of numerical indices by

ξB �→ ξA = εABξB, ξȦ �→ ξḂ = ξȦεȦḂ,

ξA �→ ξB = ξAεAB, ξḂ �→ ξȦ = εȦḂξḂ,
where the anti-symmetric tensors are satisfyingε01 = ε01 = −ε0̇1̇ = −ε0̇1̇ = 1 (cf. [18]).

Let

Γ : ( + ⊕ +)⊗ ( − ⊕ −)→ C4

be defined by

Γ


f(iA), f( Ḃ

j

)

 = Γµ

(iA)

(
Ḃ

j

)eµ,

where{f(iA)} is the basis of +,

{
f(

Ȧ
i

)} the basis of − and{eµ} the basis ofC4 (i =

1,2;A = 0,1; Ȧ = 0̇, 1̇;µ = 1,2,3,4). We denoteΠ the parity change. When an
element ofΠ +,Π − andC4 are written byθiAf(iA), θȦi f( Ȧ

i

) andzµeµ, respectively, the

coordinate ofH = C4 ⊕Π + ⊕Π + ⊕Π − ⊕Π − is (zµ, θiA, θȦi ).

Definition 2.2. If the multiplication· onH is defined by



zµ

θiA

θȦi


 ·



wµ

ηiA

ηȦi


 =



zµ + wµ + Γµ

(iA)

(
Ḃ

j

)θiAηḂj + Γµ
(iB)

(
Ȧ

j

)θȦj ηiB

θiA + ηiA

θȦi + ηȦi


 ,

then we call(H, ·) theN = 2 supersymmetric Lie group.

Proposition 2.1. Right invariant vector fields of theN = 2 supersymmetric Lie group H is

Ξ(H)R =
(
⊕
µ
C
∂

∂zµ

)
⊕
(
⊕
A,i

CqiA

)
⊕
(
⊕̇
A,i

Cqi
Ȧ

)
,
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where

qiA = ∂

∂θiA
+ Γµ

AḂ
θḂi

∂

∂xµ
= ∂

∂θiA
+ θȦi

∂

∂xAȦ
,

qi
Ȧ
= ∂

∂θȦi

+ Γµ
BȦ
θiḂ

∂

∂xµ
= ∂

∂θȦi

+ θiA ∂

∂xAȦ
,

∂AȦ = Γµ
AȦ
∂µ = ∂

∂xAȦ
, xAȦ = ΓAȦµ xµ.

And theN = 2supersymmetric algebra is a super Lie algebra of graded dimension4|8with
four even generators∂µ (µ = 1, . . . ,4) and eight odd generatorsqiA, qiA (i = 1,2;A =
0,1; Ȧ = 0̇, 1̇),which form two2-tuples of Weyl spinors of opposite type. The commutation
relations are

{qiA, qjB} = {qi
Ȧ
, q
j

Ḃ
} = 0,

[∂µ, ∂ν] = [∂µ, qiA] = [∂µ, q
i
A] = 0, {qiA, q

j

Ȧ
} = 2δji Γ

µ

AȦ
∂µ,

whereΓµ
AȦ

are the Pauli matrices.

By a super vector bundleE over a supermanifold(M,O(∧E)) we mean a locally free
Z2-graded sheafE = E0 + E1. We say thatE has rankp|q if the local basis consist
of p even andq odd sections. A super connection onE is defined as usual by a linear
mapping∇s : Γ(E) → Γ(E ⊗ T ∗M) such thatf ∈ O(∧E), s ∈ Γ(E), X,X1, X2 ∈
Γ(T ∗M):

∇sX(fs) = (Xf)s+ (−1)|X||f |f∇sXs, ∇sX1+X2
= ∇sX1

+ ∇sX2
, ∇sfX = f∇sX.

The curvature of a super connection is theO(∧E)-bilinear mapping:

F(X1, X2) = ∇sX1
∇sX2

− (−1)|X1||X2|∇sX2
∇sX1

− ∇s[X1,X2] .

With respect to the basis{qiA, q
i
A, ∂AȦ} for the vector fields onM = C4|4N and to the

local basis{s1, s2, . . . , sp|sp+1, . . . , sp+q} for E, we can give the super connections
onE:

QiA = qiA + ωiA, Qi
Ȧ
= qi

Ȧ
+ ωi

Ȧ
, ∇AȦ = ∂AȦ + AAȦ.

Then we can define the odd–odd curvature by

FiAjB = {QiA,QjB}, F
ij
ȦḂ

= {Qi
Ȧ
,Q

j

Ḃ
}, F

j

iAḂ
= {QiA,Q

j

Ḃ
} − 2δji∇AḂ.

The odd–even and even–even curvatures are

FiA,BḂ = [QiA,∇BḂ], F i
Ȧ,BḂ

= [Qi
Ȧ
,∇BḂ], FAȦ,BḂ = [∇AȦ,∇BḂ]

(cf. [8–10]).
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Theorem 2.1 (Harnad–Hurtubise–Legare–Shnider, 1985).There is a one-to-one corre-
spondence between:

(1) the complex super connection(AAȦ, ωiA, ω
i

Ȧ
) subject to the constraints as follows:

{QiA,QjB} + {QiB,QjA} = 0, (1)

{Qi
Ȧ
,Q

j

Ḃ
} + {Qi

Ḃ
,Q

j

Ȧ
} = 0, (2)

{QiA,Q
j

Ḃ
} − 2δji∇AḂ = 0 (3)

and the following transverse gauge conditions:

θiAωiA + θi
Ȧ
ωȦi = 0

and
(2) the superfields(AAȦ, χiA, χ

i

Ȧ
, φij ) subject to the N-supersymmetric Yang–Mills equa-

tions (N = 1,2, or 3), and implying the gauge condition, which are called the
D-recursions.

3. Super twistor space

We will define theN super twistor space (N = 1,2,3 or 4) (cf.[7,15]).

Definition 3.1. The super twistor spaceZ = Z3|N is defined by the rank-2|N vector bundle
over the Riemann sphereP1 obtained by tensoring the trivial bundle with the hyperplane
bundleOP1(1) and the odd hyperplane bundleΠOP1(1):

Z3|N = OP1(1)⊕OP1(1)⊕ΠOP1(1)⊕ · · · ⊕ΠOP1(1)︸ ︷︷ ︸
N-times

.

The associated space is defined to be the space of sections of this bundle which is

M = Γ(P1, Z) � C4|4N.

We will denote the holomorphically embedded inP1 in Z corresponding to the point
x = (xAȦ|θiA, θȦi ) ∈ M by x̂. Introduce homogeneous coordinates [π0̇, π1̇] on P1 and
homogeneous coordinates([ω0, ω1]|ci) (i = 1,2,3 or 4) on the fibers ofZ. The general
section ofZ is then given by

ωA = xAȦπȦ + θiAθȦi πȦ, ci = θȦi πȦ (i = 1,2,3,4).

A point z ∈ Z is represented by the subset ofM consisting of thosex ∈ M such that̂x
containsz. This is the affine codimension 2|N hyperplaneΣ(z|ζ) = Σ2|3N

(z|ζ) in M, so called

self-dual super plane, given by holding([ωA, πȦ]|ci) fixed in the above equation and letting
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thex-variables vary. We see that the tangent space of self-dual super plane is spanned by
vectors{

πȦ
∂

∂xAȦ
, πȦ

∂

∂θȦi

,
∂

∂θiA

}
.

The correspondence space is

Y = {((x|θ), (z|ζ)) ∈ M × Z : z ∈ x̂}.
The restrictions toY of the projections on the two factors ofM×Z define a double fibration

Z
p2←Y

p1→M,

where for each(x|θ) in M, p−1
1 ((x|θ)) is a copy ofx̂ = P1 while for each(z|ζ) ∈ Z,

p−1
2 ((z|ζ)) isΣ(z|ζ), the space of(x|θ) such that̂x passes through(z|ζ). To understand these

maps more explicitly, it will be convenient to introduce coordinates(xAȦ|θiA, θȦi ) onM so
that coordinates onY are

(xAȦ, [πȦ]|θiA, θȦi )

with

p1((x
AȦ, [πȦ]|θiA, θȦi )) = (xAȦ|θiA, θȦi )

and

p2((x
AȦ, [πȦ]|θiA, θȦi )) = ([xAȦπȦ + θiAθȦi πȦ, π

Ȧ]|θȦi πȦ).

4. N=2 supersymmetric instantons

We refer to[5,6,14–16]for the definition of supersymmetric instantons. In this paper we
adopt the definition of supersymmetric instantons as follows.

Definition 4.1. N = 2 supersymmetric instantons onC4|8 is defined by the following
conditions:

F+
AȦ,BḂ

= 0, FiA,BḂ = 0, FiA,jB = 0.

Proposition 4.1. The following three conditions are equivalent:

(1) N = 2 supersymmetric instantons.
(2) F+

AȦ,BḂ
= 0,χi

Ȧ
= 0, φ̃ = 0.

(3) F+
AȦ,BḂ

= 0, εAB∇AȦχiB = 0,∇AḂ∇AḂφ = 1
2εij {χiA, χ

j

A}.

Proof. TheN = 2 constraints are equivalent to

FiA,jB = 2εij εABφ̃, F
ij
ȦḂ

= 2εij εȦḂφ, F
j

iAḂ
= 0,
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whereφ̃, φ are the bosonic scalar superfields, so called Higgs fields, defined by contraction
of odd–odd indices in the super curvature. From the constraints (1), (2), (3) inTheorem 2.1
and the Bianchi identities we derive the following relations (cf.[9,10]):

QiAφ̃ = 0, Qi
Ȧ
φ̃ = εijχjȦ, QjAφ = εijχiA, Qi

Ȧ
φ = 0,

FiA,BḂ = εABχiḂ, F i
Ȧ,BḂ

= εȦḂχiB, Q
j

AχiḂ = 2δji fȦḂ + εȦḂDji ,
QiAχ

j
B = 2δji fAB − εABD

j
i , QiAχjȦ = 2εij∇AȦφ̃, Qi

Ȧ
χ
j

A = 2εij∇AȦφ,
QkAD

j
i = −2δjkε

ȦḂ∇AȦχiḂ + δji εȦḂ∇AȦχkḂ − 2εki[χ
j

A, φ̃],

Qk
Ȧ
D
j
i = 2δki ε

AB∇AȦχjB − δji εAB∇BȦχkA + 2εkj[χiA, φ],

FAȦ,BḂ = εABfȦḂ + εȦḂfAB,

whereDji is the auxiliary field,fȦ,Ḃ, fAB are, respectively, self-dual and anti-self-dual part
of even–even curvature, fermions(χ1

A, χ1Ȧ) and(χ2
A, χ2Ȧ) are gaugino and Higgsino (cf.

[8–10]).
N = 2 supersymmetric Yang–Mills field equations are

εAB∇AḂfCB + εȦĊ∇CȦfĊḂ + {χiC, χiḂ} + [φ,∇CḂφ̃] + [φ̃,∇CḂφ] = 0,

εȦḂ∇AȦχiḂ + εij [χjA, φ̃] = 0, εAB∇AȦχiB + εij [χjȦ, φ] = 0,

∇AḂ∇AḂφ̃ + [[φ, φ̃], φ̃] − 1
2ε

ij {χȦi , χjȦ} = 0,

∇AḂ∇AḂφ + [[ φ̃, φ], φ] − 1
2εij {χiA, χ

j

A} = 0. �

5. Supersymmetric Penrose–Ward correspondence

The following theorem is involved in the case ofN = 1 [15]. Thus we will discuss only
the case ofN = 2.

Theorem 5.1. Let U ⊂ C4|8 be an open set such that the intersection of U with every
self-dual super planeΣ that meets U is connected and simply connected. Then there is a
natural one-to-one correspondence between:

(a) N = 2 supersymmetric instantons on U with structure group GL(p|q, C) and
(b) holomorphic rank-p|q super vector bundles E over the3|2-dimensional super twistor

space Z such that E restricted tox̂ is trivial for all (x|θ) ∈ U.

Proof. We will describe how to go from (a) to (b) and then how to go from (b) to (a). Suppose
that we are given anN = 2 supersymmetric instantons overGL(p|q, C)-super vector bundle
V defined onU. Note that the set of allN = 2 self-dual super planeΣ = Σ(z|ζ) in U is
a 2|6-dimensional super twistor spaceZ of U. To construct a vector bundleE overZ we
must assign a copy of the super vector spaceCp|q to each pointΣ̃ = Σ̃2|6 of Z, thisCp|q
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being the fiberEΣ̃ overΣ̃. This assignment is given by the definition

EΣ̃ = {ψ ∈ Γ(U ∩Σ,V ) : ∇|U∩Σψ = 0}.
This definition requires it to be covariantly constant onΣ, i.e. to satisfy the propagation
equation:

∇
TAȦ
ψ = 0, (4)

∇
T Ȧi
ψ = 0, (5)

∇T iAψ = 0 (6)

for all vector fieldsTAȦ, T Ȧi andT iA tangent toΣ. SinceU ∩Σ is connected and simply
connected, i.e. equivalent to the condition that the restriction of the super curvatureF

to U ∩ Σ should vanish. SubstitutingTAȦ = λAπȦ∂AȦ for some spinorλA ∈ + and

T Ȧi = αiπȦ(∂/∂θȦi ), T iȦ = βi(∂/∂θiA) for some odd constantαi, βi into (4)–(6), we have

λAπȦλBπḂFAȦ,BḂ = 0, (7)

αiπ
ȦλBπḂFi

Ȧ,BḂ
= 0, (8)

βiλBπḂFiA,BḂ = 0, (9)

αiαjπ
ȦπḂF

ij
ȦḂ

= 0, (10)

βiβjFiAjB = 0, (11)

αjβ
iπḂF

j

iAḂ
= 0. (12)

Taking the inhomogeneous coordinate [π0̇, π1̇] = [1, ζ] ∈ P1, we will calculate from
(7)–(10) and (12), respectively.

From(7), we see that

0 = λAπȦλBπḂFAȦ,BḂ = λAλB(FA0̇,B0̇ + ζ(FA1̇,B0̇ + FA1̇,B0̇)+ ζ2FA1̇,B1̇)

for anyλA, λB andζ. Hence

FA0̇,B0̇ = FA1̇,B1̇ = 0, FA0̇,B1̇ = FA1̇,B0̇ = 0

for anyA andB. This is the anti-self-dual condition.
From(8), we see that

0 = αiπȦλBπḂFiȦ,BḂ = αiλB(Fi0̇,B0̇ + ζ(Fi0̇,B1̇ + Fi1̇,B0̇)+ ζ2Fi1̇,B1̇)

for anyαi, λB andζ. Hence

Fi0̇,B0̇ = Fi1̇,B1̇ = 0, (13)

Fi0̇,B1̇ = Fi1̇,B0̇ = 0 (14)
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for anyB. From a Bianchi identityFiȦ,BḂ = εȦḂχiB, we obtain that the conditions(13)
and (14)are automatically satisfied.

From(9), we obtain the essential property that

FiA,BḂ = 0.

This condition is equivalent toχiȦ = 0.
From(10), we see in the same way that

F
ij
0̇0̇

= F ij
1̇1̇

= 0, F
ij
0̇1̇

= F ij
1̇0̇

= 0.

This condition is equivalent to constraint(2).
From(11), we haveFiAjB = 0. This condition is equivalent tõφ = 0. Note that this is the

condition stronger than the constraint(1). We also see that(12) is equivalent to constraints
(3). Therefore(4)–(6)are equivalent to the super instantons fields.

Let us move on now to showing how to go from (b) to (a). LetE be a holomorphic
rank-p|q super vector bundle over the super twistor spaceZ, such thatE|x̂ is trivial
for all (x|θ) ∈ U. We have to construct a gauge potentialA on U. We define a bundle
V → U by

V(x|θ) = Γ(x̂, E|x̂).
By hypothesis, the restriction ofE to x̂ is the product bundlêx×Cp|q. In this trivialization,
global sections ofE|x̂ are holomorphic mapŝx → Cp|q. By Liouville’s theorem they are
constant, and henceV(x|θ) is a vector space of dimensionp|q. Therefore we have a rank-p|q
vector bundleV overU. We now want to define a super connection(A, ω) on V , which
means knowing how to parallel propagate vectorsψ in E along curves inU. This in turn is
equivalent to knowing how to propagateψ in null directions, since the null vectors span the
whole tangent space ofU. Any null vector is tangent to a unique self-dual super planeΣ,
and the various points onΣ correspond to lines inZ passing through̃Σ. If x̂ andŷ are two
lines intersecting at̃Σ, thenΓ(E|x̂) � Γ(E|ŷ). So we know how to propagate a vectorψ
fromx toy, and hence we know the super connection onV . By construction, this connection
is flat, i.e.∇U∩Σψ = 0, on all self-dual super planes, and therefore is a supersymmetric
instanton. �

Actually, the above argument is incomplete, since we should check that the propaga-
tion rule really does define a connection. We will give an explicit description of how to
extract the super connection from the transition functionsg((Zα|ci)) for the super vector
bundleE in Appendix A. But remains of this proof is of analogy for argument of Ward and
Wells [18].

We will restrict the complex super spaceC4|8 to the Euclidean super spaceR4|8.

Theorem 5.2. There is a natural one-to-one correspondence between:

(a) N = 2 supersymmetric instantons onR4|8 with structure group GL(n, C) and
(b) holomorphic rank-n vector bundles E over the3|2-dimensional super twistor space Z

such that E restricted tôx is trivial for all (x|θ) ∈ R4|8.
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Proof. LetP3|2 be a 3|2-dimensional complex projective super space. Letσ : P3|2 → P3|2
denote the anti-holomorphic involution, so calledreal structure, defined by

σ(ω0, ω1, π0̇, π1̇|ζ1, ζ2) = (ω1,−ω0, πi̇,−π0̇|ζ2,−ζ1).

For any point(z|ζ) ∈ P3|2, the linex̂ joining (z|ζ) toσ((z|ζ)) is a real line, i.e.̂x is invariant
underσ.

The real structure onC4|8 is defined by (cf.[10])

xBḂ = εABxAȦεȦḂ, θiA = εABεijθ
jB, θȦi = εȦḂεji θḂj ,

where the anti-symmetric tensorsεAB, εAB, ε
ȦḂ andεȦḂ (ε01 = ε01 = −ε0̇1̇ = −ε0̇1̇ = 1)

will be used for raising and lowering of spinor indices:

ξA = εABξB, ξḂ = ξȦεȦḂ, ξB = ξAεAB, ξȦ = εȦḂξḂ

andεij = εAB.

Next, now given a complexn-vector bundleV overR4|8, with super connection∇s, we
can pull bothV and∇s back toZ, thereby obtaining a vector bundleE overZ, with super
connection∇̃s. At this stage,E is only a differentiable bundle. We want to endowE with
a super holomorphic structure. But using demonstrated in Atiyah et al.[3], we see in the
same way thatE has a super holomorphic structure[13]. Note that the double fibration
deduce to

Z3|2 p2←R4|8 × P1 p1→R4|8

for each(z|ζ) in Z, p−1
2 ((z|ζ)) become the real 0|4-real-dimensional super subspace in

Σ2|6 spanned by{∂/∂θAi }. �

Restricting the structure groupGL(n, C) to SU(n), we also obtain the following.

Theorem 5.3. There is a natural one-to-one correspondence between:

(a) N = 2 supersymmetric instantons onR4|8 with structure group SU(n) and
(b) holomorphic rank-n vector bundles E over the3|2-dimensional super twistor space Z

such that
(i) E|x̂ is trivial for all (x|θ) ∈ R4|8;

(ii) detE is trivial;
(iii) E admits a positive real form.

Proof. To reduce the structure group (gauge group) toSU(n), we equip each fiber ofV with
a unitary structure. The unitary structure onV can be given by an anti-linear isomorphism
τ̃ : V → V ∗ such that〈ψ, τ̃ϕ〉 is a positive Hermitian form (V ∗ denotes the dual ofV ).
Here〈,〉 denotes the natural pairing betweenV andV ∗. Passing toE we useτ̃ to define a
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lifting τ of the real structureσ onZ, namely we define a commutative diagram:

whereτ mapsE(z|ζ) toE∗
σ((z|ζ)), and

〈ξ, τη〉 = 〈η, τξ〉, ξ ∈ E(z|ζ), η ∈ Eσ((z|ξ)),
which is called apositive real formonE.

Conversely, having such a structureτ onZ guarantees that the corresponding gauge field
onR4|8 admits an Hermitian structure, i.e. it is aU(n)-gauge field. Assuming thatE|x̂ is
trivial for all (x|θ) ∈ R4|8, thenτ induces a nondegenerate Hermitian formτ̃ on the space
V(x|θ) = Γ(x̂, E|x̂) of holomorphic sections ofE|x̂ for each(x|θ) ∈ R4|8. �

6. ADHM-matrix representations

We next describe Horrock’s monad construction of holomorphic rank-2 super vector
bundles on 3|2-dimensional complex projective super spaceP3|2. The monad construction
may be described in terms of the following data.

Data. The super linear algebra for the monad construction of holomorphic super vector
bundlesE→ P3|2 corresponding toN = 2 supersymmetric instantons on aSU(2)-bundle
V → R4|8 with c2(V) = k is given by the following:

(i) A mapσ : C4|2 → C4|2 defined by

σ(z|ζ) = σ(z1, z2, z3, z4|ζ1, ζ2) = (z̄2,−z̄1, z̄4,−z̄3|ζ̄2,−ζ̄1).

(ii) A complex super vector spaceW , with dimC W = k|2 and a conjugate linear map
σW : W → W , σ2

W = 1.
(iii) A complex super vector spaceV (note that we use the same symbolV as the vector

bundle overR4|8), with dimC V = (2k+2)|4, with a symplectic formb and conjugate
linear mapσV : V → V , so thatσ2

V = −1, and satisfying:
(a) The formb is compatible withσV , in the sense that

b(σVu, σV v) = b(u, v).
(b) The induced Hermitian formh(u, v) = b(u, σVu) is required to be positive definite.

(iv) A super linear mapA((z|ζ)) : W → V , depending linearly on(z|ζ) = (z1, z2,

z3, z4|ζ1, ζ2), so

A((z|ζ)) =
4∑
α=1

Aαz
α +

2∑
i=1

Biζ
i,
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whereAα andBi are(2k + 2|4)× (k|2)-constant even and odd matrices satisfying:

(a) Rank condition: for all(z|ζ) �= (0|0), dimC ImA((z|ζ)) = k.
(b) Isotropic condition: for all(z|ζ) �= (0|0), ImA((z|ζ)) is an isotropic subspace

of V , so that ImA((z|ζ)) ⊂ (ImA((z|ζ)))◦, where(ImA((z|ζ)))◦ = {v ∈ V :
b(u, v) = 0, u ∈ ImA((z|ζ))}.

(c) Reality condition: for all(z|ζ) ∈ C4|2, w ∈ W , then σV {A((z|ζ))w} =
A(σ(z|ζ))σWw.

The symplectic formb : V ⊗ V → C induces an isomorphismb : V → V ∗ given by
v �→ b(v) = b(·, v). SinceA∗((z|ζ)) : V ∗ → W∗, we obtain a mapA∗((z|ζ))b : V → W∗
defined by

(A∗((z|ζ))b(v))w = b(A((z|ζ))w, v), u ∈ V, w ∈ W.

We then have the corresponding monad:

0 → W ⊗OP3|2(−1)
A→V

¯
A∗b→W ⊗OP3|2(1)→ 0,

whereV
¯

andOP3|2(−1) denote the trivial bundleV × P3|2 → P3|2 and the tautological
line bundle onP3|2, respectively. Then the bundleE→ P3|2 is defined as Ker(A∗b)/ImA,
with fibers

E(z|ζ) = Ker(A∗((z|ζ))b)
ImA((z|ζ)) = (ImA((z|ζ)))◦

ImA((z|ζ))

for (z|ζ) ∈ P3|2. If we recall thatV � C2k+2|4, W � Ck|2, then we see that the above
monad is equivalent to

0 → Ok
P3/2(−1)⊕ (ΠOP3|2(−1))2

A→O2k+2
P3|2 ⊕ (ΠOP3|2)4

A∗b→Ok
P3|2(1)⊕ (ΠOP3|2(1))2 → 0.

We haveC4|4⊗CW � H2|2⊗RWR, and the induced mapσ⊗σW onC4|4⊗CW corresponds
to left multiplication byj on the left quaternion super vector spaceH2|2⊗RWR. The complex
super linear mapA : C4|4 ⊗C W → V may now be viewed as a map

A : H2|2 ⊗R WR → V

and compatibility ofA((z|ζ)) with σ ⊗ σW is equivalent to requiring thatA be quaternion
super linear. If we take a real basis ofWR and an orthogonalH-basis ofV , so thatV
gets identified withHk+1|2, thenA is described by four matricesC, D, G andH . The
column-vectors ofC are the image underA of (1,0|0,0) ⊗ {basis vectors of WR} andD,
G orH are similarly defined replacing(1,0|0,0) by (0,1|0,0), (0,0|ξ1,0), (0,0|0, ξ2) in
H2|2, respectively. We use matrices as right multipliers here since our scalars act on the left,
so thatC,D,G andH are(k+ 1|2)× (k|2)-matrices. Regarded as a matrix function of the
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coordinate of(x, y) ∈ H2|0 and(θiA, θȦi ) ∈ H0|2 � R0|8 we then have

A(x, y|θiA, θȦi ) = xC+ yD+
2∑
i=1

GiAθ
iA +

2∑
i=1

Hi
Ȧ
θȦi ,

whereC andD are(k+1|2)×(k|2)-even matrices andGiA andHi
Ȧ

are(k+1|2)×(k|2)-odd
matrices.

Rank condition is equivalent toA(x, y|θiA, θȦi ) has maximal rank for all(x, y|θiA, θȦi ) �=
(0,0|0,0). The columns ofA(x, y, |θiA, θAi ) then span a subspace ofHk+1|2 having di-
mension(k|2) and depending only on the ratioxy−1, i.e. on the point of quaternionic
super projective spaceHP1|2. The orthogonal complement is then a subspace
V
(x,y|θiA,θȦi )

of quaternion super dimension 1|0. TheSp(1)-bundleV → HP1|2 is obtained by

setting

V
(x,y|θiA,θȦi )

= (ImA(x, y|θiA, θȦi ))
⊥ ⊂ Hk+1|2, ([x, y]|θiA, θȦi ) ∈ HP1|2.

We now have the quaternionic bundle exact sequence overHP1|2 given by

0 → V → H
¯
k+1|2 → kL⊕ΠL⊕ΠL→ 0,

whereL→ HP1|2 denotes the tautological quaternionic line bundle andkL = L⊕· · ·⊕L.
If we restrict toR4|8 ⊂ HP1|2 then we can take affine coordinate(x,1|θiA, θȦi ) and

A(x|θiA, θȦi ) = A(x,1|θiA, θȦi ). PuttingA(x|θ) = A(x|θiA, θȦi ), we obtain the follow-
ing.

Theorem 6.1. Quaternionic super matricesA(x|θ) satisfying

(i) A(x|θ) has rank k for all(x|θ) �= (0|0),
(ii) A†

(x|θ)A(x|θ) is real, and
(iii) GiA = 0 for all i , A

give rise to a supersymmetric instanton on a Sp(1)-bundle V overR4|8 with Chern number
k.

Proof.

0 → H1|0B(x|θ)→ Hk+1|2A
∗
(x|θ)→ Hk|2 → 0.

Choosing a gauge for the bundleV will give rise to linear mapsB(x|θ) : H1|0 → Hk+1|2
whose image is justV(x|θ) ⊂ Hk+1|2. If inner products are fixed so thatB(x|θ) is an orthogonal

gauge then orthogonal projectionP(x|θ) ontoV(x|θ) is given byP(x|θ) = B(x|θ)B
†
(x|θ), while

B
†
(x|θ)B(x|θ) = 1. To compute the super covariant derivative∇ in the gaugeB(x|θ) we put

f = B(x|θ)g whereg is now a function onR4|8 with values inH1|0 and find

∇(B(x|θ)g) = P(x|θ)d(B(x|θ)) = B(x|θ){dg+ B†
(x|θ)(dB(x|θ))g}
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showing that the super connection formA is given by

A = B†
(x|θ)dB(x|θ),

whend is flat super connection onH
¯
k+1|2. The super curvatureFA corresponding to the

super connectionA is given by

FA = P(x|θ)dA(x|θ)ρ−2dA†
(x|θ)P(x|θ), (15)

whereρ2 = A
†
(x|θ)A(x|θ). Substituting forA(x|θ) in (15) gives the following expression for

the super curvatureFA:

FA = P(x|θ){Cdxρ−2dx̄C† + Cdxρ−2(ΣdθiAG†)+ Cdxρ−2(ΣdθȦi H
†)

+ (GΣdθiA)ρ−2dx̄C† + (ΣGdθiA)ρ−2(ΣdθiAG†)

+ (ΣGdθiA)ρ−2(ΣdθȦi H
†)+ (ΣHdθȦi )ρ

−2dx̄C†

+(ΣHdθȦi )ρ
−2(ΣdθiAG†)+ (ΣHdθȦi )ρ

−2(ΣdθȦi H
†)}P(x|θ).

FromDefinition 4.1of the supersymmetric instantons, we see thatρ−2 is real andGiA = 0
for all i, A. �

Appendix A

Giving an explicit description of how to extract the super connection from the transition
function for the super vector bundleE, we will complete the proof ofTheorem 5.1.

Proof of Theorem 5.1. If {W0,W1, . . . } is an open covering ofZ, for whichE|Wj is trivial,
then there are transition functionsgij which are super matrix-valued functions of the form

gij : Wi ∩Wj → GL(p|q;C).
The super twistor spaceZ can be covered by two coordinate chartsW andW

¯
defined by

W = {([ωA, πȦ]|ci) : π1̇ �= 0}
and

W
¯
= {([ωA, πȦ]|ci) : π0̇ �= 0}.

The super vector bundleE is specified by giving a holomorphic(p|q) × (p|q) transition
matrixg((zα|ci)) on the intersectionW ∩W

¯
. The transition relation is

ξ
¯
= g((zα|ci))ξ,

whereξ andξ
¯

are columnp|q-vectors whose components serve as coordinate on the fibers
of E aboveW andW

¯
, respectively. The first step is to restrictE to a line x̂ in Z. This is
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achieved by substitutingωA = xAAπȦ + θiAθȦi πȦ andci = θȦi πȦ into g((zα|ci)), hence
obtaining the transition matrix

G = G(x, πȦ, θ) = g([xAȦπȦ + θiAθȦi πȦ, πȦ]|θȦi πȦ)
for the bundleE|x̂ over x̂. We must now find the holomorphic sections ofE|x̂, and this
can be done as follows. Find nonsingular(p|q) × (p|q) matricesH = H(x, πȦ, θ) and
H
¯

= H
¯
(x, πȦ, θ) with H-holomorphic for allπȦ ∈ W ∩ x̂ andH

¯
-holomorphic for all

πȦ ∈ W
¯
∩ x̂, such that theBirkhoff splitting formula

G = H
¯
H−1 (A.1)

is valid onW ∩W
¯
∩ x̂. SinceE|x̂ is trivial, such matricesH andH

¯
must exist. Each section

of E|x̂ is given by

ξ = Hψ, ξ
¯
= H

¯
ψ,

whereψ is a constantp|q-vector with respect toπȦ. The negative odd spinor connectionωi
Ȧ

is obtained by differentiation along a null vectorT Ȧi = αiπȦ(∂/∂θȦi ) for some odd constant
αi. This gives

0 = ∇
T Ȧi
ψ = αiπȦ(∂iȦψ + ωi

Ȧ
ψ) = αiπȦ(∂iȦ(H−1ξ)+ ωi

Ȧ
ψ)

= αiπȦ((∂iȦH−1)ξ + ωi
Ȧ
ψ) = αiπȦ(−H−1(∂iȦH)H

−1ξ + ωi
Ȧ
ψ)

= αiπȦ(−H−1(∂iȦH)+ ωiȦ)ψ,

which holds for allψ and for allαi. So we deduce thatωi
Ȧ

is given

πȦωi
Ȧ
= H−1(πȦ∂iȦH). (A.2)

In the same way, the positive odd spinor connectionωiA is obtained by differentiating along
a null vectorT iA = βi(∂/∂θiA) for some odd constantβi. This gives

ωiA = H−1(∂iAH). (A.3)

The even connectionAAȦ is also obtained by differentiating along a null vectorTAȦ =
λAπȦ∂AȦ for some even spinorλA (cf. [18]):

πȦAAȦ = H−1(πȦ∂AȦH). (A.4)

For the super connections(AAȦ, ωiA, ω
i

Ȧ
) to be well-defined, we must prove that the

right-hand side of(A.2) and (A.4)are linear inπȦ, respectively. To prove it, operate on the
splitting formulaG = H

¯
H−1 with πȦ∂iȦ andπȦ∂AȦ, respectively (cf.[18, (8.1.6)]). Then

we have

H−1(πȦ∂iȦH) = H¯
−1(πȦ∂iȦH¯

), (A.5)

H−1(πȦ∂AȦH) = H¯
−1(πȦ∂AȦH¯

). (A.6)
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Now the left-hand side of(A.5) and (A.6)are holomorphic forπȦ ∈ W ∩ x̂, while the
right-hand side are holomorphic forπȦ ∈ W

¯
∩ x̂. Thus both sides are holomorphic on the

whole Riemann spherêx, and in addition are homogeneous of degree 1 inπȦ. So both sides
must be linear inπȦ, which was what we wanted to prove. �
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